Cloud-Mining – eine neue Anlageklasse. Ein ...

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

IOTA Definition

IOTA Definition
History of IOTA
The blockchain was announced in October 2015 through. The roots of IOTA go back to the Jinn project. That project aimed to develop ternary hardware or low-cost and energy-efficient hardware, primarily general-purpose processors, for use in the IoT ecosystem. Jinn held a crowd sale for its tokens in September 2014. The Jinn tokens were soon in hot water because they marketed as profit-sharing tokens.. In 2015, Jinn was rebranded as IOTA, and another token sale was held. This time around, the tokens were marketed as utility tokens, and Jinn token holders could exchange their tokens at equivalency with the new blockchain. According to David Sønstebø, IOTA was “spawned” due to the Jinn project. But reports state that a snapshot of the genesis transaction is yet to be found online. These tokens were dispersed to other “founder” addresses. The total number of mIOTAs planned to be in existence is 27 quadrillion. According to IOTA’s founders, the total number of mIOTAs fits in “nicely” with the maximum allowable integer value in Javascript, a programming language.
Understanding IOTA
According to research firm Gartner, there will be 20.4 billion devices connected to the Internet by 2020. Within this ecosystem, each device will exchange data and payment information with multiple, other devices in transactions conducted throughout the day. IOTA intends to become the standard mode of conducting transactions on devices. Its founders have described the ledger as a “public permission-less backbone for the Internet of Things that enables interoperability between multiple devices.” In simple words, this means that it will enable transactions between connected devices, and anyone will be able to access it. Those problems are primarily caused due to a backlog of transactions on Bitcoin’s blockchain. The backlog itself is because of a variety of reasons, from small block sizes to the difficulty of puzzles that miners must solve to earn the cryptocurrency as a reward. IOTA solves these problems by reconfiguring blockchain's architecture into Tangle, a new way of organizing data and confirming transactions.
How Does IOTA Solve Bitcoin’s Scalability Problems?
IOTA’s solution to Bitcoin’s problems is to do away with several key concepts and topographical constraints of a blockchain. mIOTA, IOTA’s cryptocurrency, is pre-mined and consensus of transactions occurs differently as compared to a blockchain. IOTA developers have proposed a new data structure. Tangle is a Decentralized Acyclic Graph, a system of nodes which is not sequential. Thus, each node can be connected to multiple other nodes in a Tangle. But they are connected only in a particular direction, meaning that a node cannot refer back to itself. A standard blockchain is also a DAG because it is a sequential linked set. In Bitcoin, a group of systems running full nodes that contain the entire history of transactions for a ledger are required for confirmations and consensus. Full node miners are not required in Tangle. Each new transaction is confirmed by referencing two previous transactions, reducing the amount of time and memory required to confirm a transaction. Related to the concept of a “confidence” is a transaction’s weight. As it moves through Tangle, a transaction gathers weight. A transaction’s weight increases with the number of approvals. Once a transaction is confirmed, it is broadcast to the entire network, and another unconfirmed transaction can choose the newly-confirmed transaction as one of the tips to confirm itself.
Governance Protocol
IOTA has not outlined a governance structure for its blockchain. The IOTA Foundation is primarily responsible for funding and leading development of IOTA. In a previous post, John Licciardello, former managing director of IOTA's Ecosystem Development Fund (EDF), that would allow members of the IOTA community to vote on proposals regarding its future direction. But there are no updates on the initiative yet.
Concerns About IOTA
Criticism of IOTA has mainly centered around its technical flaws. As with most cryptocurrencies, IOTA’s system is nascent and unproven. A phishing attack on its network resulted in the theft of mIOTA worth $3.94 million. In other words, they created their encryption scheme from scratch, forgoing the widely-used SHA-256 hash function used in Bitcoin. The team at MIT’s Digital Currency Initiative found serious vulnerabilities with IOTA’s hash function, which is called Curl. This property is known as Collision and denotes a broken hash function. In their analysis of the vulnerability, the MIT team stated that a bad actor could have destroyed or stolen user funds from Tangle with their technique. IOTA’s team has corrected the vulnerability. The foundation announced a new partnership with Ledger, one of the leading producers of hardware wallets. IOTA technology will be integrated into the hardware wallets, giving users the ability to store the private key information in a device that adds another layer of protection from hackers.
https://preview.redd.it/ex768bb74gw31.jpg?width=777&format=pjpg&auto=webp&s=4e89f0875410274a85b76227c17d321b5c3d29ed
“The collaboration between the teams created an immediate synergy concentrated on developing a compatibility feature allowing users to access, store and manage IOTA tokens on Ledger devices. 

The IOTA (MIOTA) digital asset suffered from a lack of adequate wallets for months, even at the peak of the market. The asset, which commanded prices above $5, was not spared by the bear market. Despite the launch of the long-awaited Trinity wallet, MIOTA lost positions. Given that mIOTA, the crypto used in IOTA, is still to gain mainstream traction, its claims to eliminate scalability problems for blockchains through the use of DAGs are also still to be proven. Vitalik Buterin, the co-founder of Ethereum, has cast doubt on the ability of hashgraphs to solve scalability issues.
Another problem with IOTA currently is the small size of its network. Researchers have found that hackers need only gain control of 33% of the total hashing power required to bring it down. In Bitcoin, control of 51% of a network is required to bring its blockchain down. To ensure security, IOTA’s network currently uses a central server known as a Coordinator to process transactions. This practice has diluted its claims of being a decentralized system since the introduction of a Coordinator has resulted in the introduction of a single point of failure.
The consensus system is described in a new white paper. In the past, IOTA has been criticized for its hidden centralization, as well as for the loss of coins sometimes happening when a user’s wallet was unable to receive its previous balances from the state of the Tangle.
But despite the innovation, IOTA lags behind digital assets that are receiving the most significant inflows of investment and trading liquidity.
submitted by Avra11 to u/Avra11 [link] [comments]

What is presented to the server/pool when running a distributed miner like e.g. a Javascript CAPTCHA?

I'm trying to understand the idea behind javascript-mining. Especially how it is used to present a CAPTCHA. I understand most of the basics of mining (BTC/ETH etc), I grasp the concepts of difficulties and how e.g. bitcoin just adds more "leading zeroes" to make a possible hash more difficult to find.
What I don't understand, is how this can be used to present e.g. a CAPTCHA. In essence, this is a form of pooled mining, not?
For example, coin-hive opens a websocket and then starts sending data over it, but I don't understand what that data is. It mines for a few seconds and then gives the site an OK: the CAPTCHA is unlocked and I can move on (e.g. register). I'm pretty sure the CAPTCHA does not run untill it has found a hash for the current difficulty. Or am I wrong there? I'm also pretty sure that if my computer simply sends "I ran for 5 seconds and created 300 hashes" that would be easily forgeable.
So what is my computer presenting to the server (pool)? Does it send over (a zipped) list of each hash it calculated? Or some summary or proof that is un-forgeable? And if so: what is presented?
submitted by berkes to MoneroMining [link] [comments]

AN INTRODUCTION TO DIGIBYTE

DigiByte

What are cryptocurrencies?
Cryptocurrencies are peer to peer technology protocols which rely on the block-chain; a system of decentralized record keeping which allows people to exchange unmodifiable and indestructible information “coins,” globally in little to no time with little to no fees – this translates into the exchange of value as these coins cannot be counterfeit nor stolen. This concept was started by Satoshi Nakamoto (allegedly a pseudonym for a single man or organization) whom described and coded Bitcoin in 2009.
What is DigiByte?
DigiByte (DGB) is a cryptocurrency like Bitcoin. It is also a decentralized applications protocol in a similar fashion to Neo or Ethereum.
DigiByte was founded and created by Jared Tate in 2014. DigiByte allows for fast (virtually instant) and low cost (virtually free) transactions. DigiByte is hard capped at 21 billion coins which will ever be mined, over a period of 21 years. DigiByte was never an ICO and was mined/created in the same way that Bitcoin or Litecoin initially were.
DigiByte is the fastest UTXO PoW scalable block-chain in the world. We’ll cover what this really means down below.
DigiByte has put forth and applied solutions to many of the problems that have plagued Bitcoin and cryptocurrencies in general – those being:
We will address these point by point in the subsequent sections.
The DigiByte Protocol
DigiByte maintains these properties through use of various technological innovations which we will briefly address below.
Why so many coins? 21 Billion
When initially conceived Bitcoin was the first of a kind! And came into the hands of a few! The beginnings of a coin such as Bitcoin were difficult, it had to go through a lot of initial growth pains which following coins did not have to face. It is for this reason among others why I believe Bitcoin was capped at 21 million; and why today it has thus secured a place as digital gold.
When Bitcoin was first invented no one knew anything about cryptocurrencies, for the inventor to get them out to the public he would have to give them away. This is how the first Bitcoins were probably passed on, for free! But then as interest grew so did the community. For them to be able to build something and create something which could go on to have actual value, it would have to go through a steady growth phase. Therefore, the control of inflation through mining was extremely important. Also, why the cap for Bitcoin was probably set so low - to allow these coins to amass value without being destroyed by inflation (from mining) in the same way fiat is today! In my mind Satoshi Nakamoto knew what he was doing when setting it at 21 million BTC and must have known and even anticipated others would take his design and build on top of it.
At DigiByte, we are that better design and capped at 21 billion. That's 1000 times larger than the supply of Bitcoin. Why though? Why is the cap on DigiByte so much higher than that of Bitcoin? Because DigiByte was conceived to be used not as a digital gold, nor as any sort of commodity, but as a real currency!
Today on planet Earth, we are approximately 7.6 billion people. If each person should want or need to use and live off Bitcoin; then equally split at best each person could only own 0.00276315789 BTC. The market cap for all the money on the whole planet today is estimated to have recently passed 80 trillion dollars. That means that each whole unit of Bitcoin would be worth approximately $3,809,523.81!
$3,809,523.81
This is of course in an extreme case where everyone used Bitcoin for everything. But even in a more conservative scenario the fact remains that with such a low supply each unit of a Bitcoin would become absurdly expensive if not inaccessible to most. Imagine trying to buy anything under a dollar!
Not only would using Bitcoin as an everyday currency be a logistical nightmare but it would be nigh impossible. For each Satoshi of a Bitcoin would be worth much, much, more than what is realistically manageable.
This is where DigiByte comes in and where it shines. DigiByte aims to be used world-wide as an international currency! Not to be hoarded in the same way Bitcoin is. If we were to do some of the same calculations with DigiByte we'd find that the numbers are a lot more reasonable.
At 7.6 billion people, each person could own 2.76315789474 DGB. Each whole unit of DGB would be worth approximately $3,809.52.
$3,809.52
This is much more manageable and remember in an extreme case where everyone used DigiByte for everything! I don't expect this to happen anytime soon, but with the supply of DigiByte it would allow us to live and transact in a much more realistic and fluid fashion. Without having to divide large numbers on our phone's calculator to understand how much we owe for that cup of coffee! With DigiByte it's simple, coffee cost 1.5 DGB, the cinema 2.8 DGB, a plane ticket 500 DGB!
There is a reason for DigiByte's large supply, and it is a good one!
Decentralisation
Decentralisation is an important concept for the block-chain and cryptocurrencies in general. This allows for a system which cannot be controlled nor manipulated no matter how large the organization in play or their intentions. DigiByte’s chain remains out of the reach of even the most powerful government. This allows for people to transact freely and openly without fear of censorship.
Decentralisation on the DigiByte block-chain is assured by having an accessible and fair mining protocol in place – this is the multi-algorithm (MultiAlgo) approach. We believe that all should have access to DigiByte whether through purchase or by mining. Therefore, DigiByte is minable not only on dedicated mining hardware such as Antminers, but also through use of conventional graphics cards. The multi-algorithm approach allows for users to mine on a variety of hardware types through use of one of the 5 mining algorithms supported by DigiByte. Those being:
Please note that these mining algorithms are modified and updated from time to time to assure complete decentralisation and thus ultimate security.
The problem with using only one mining algorithm such as Bitcoin or Litecoin do is that this allows for people to continually amass mining hardware and hash power. The more hash power one has, the more one can collect more. This leads to a cycle of centralisation and the creation of mining centres. It is known that a massive portion of all hash power in Bitcoin comes from China. This kind of centralisation is a natural tendency as it is cheaper for large organisations to set up in countries with inexpensive electricity and other such advantages which may be unavailable to the average miner.
DigiByte mitigates this problem with the use of multiple algorithms. It allows for miners with many different kinds of hardware to mine the same coin on an even playing field. Mining difficulty is set relative to the mining algorithm used. This allows for those with dedicated mining rigs to mine alongside those with more modest machines – and all secure the DigiByte chain while maintaining decentralisation.
Low Fees
Low fees are maintained in DigiByte thanks to the MultiAlgo approach working in conjunction with MultiShield (originally known as DigiShield). MultiShield calls for block difficulty readjustment between every single block on the chain; currently blocks last 15 seconds. This continuous difficulty readjustment allows us to combat any bad actors which may wish to manipulate the DigiByte chain.
Manipulation may be done by a large pool or a single entity with a great amount of hash power mining blocks on the chain; thus, increasing the difficulty of the chain. In some coins such as Bitcoin or Litecoin difficulty is readjusted every 2016 blocks at approximately 10mins each and 2mins respectively. Meaning that Bitcoin’s difficulty is readjusted about every two weeks. This system can allow for large bad actors to mine a coin and then abandon it, leaving it with a difficulty level far too high for the present hash rate – and so transactions can be frozen, and the chain stopped until there is a difficulty readjustment and or enough hash power to mine the chain. In such a case users may be faced with a choice - pay exorbitant fees or have their transactions frozen. In an extreme case the whole chain could be frozen completely for extended periods of time.
DigiByte does not face this problem as its difficulty is readjusted per block every 15 seconds. This innovation was a technological breakthrough and was adopted by several other coins in the cryptocurrency environment such as Dogecoin, Z-Cash, Ubiq, Monacoin, and Bitcoin Gold.
This difficulty readjustment along with the MultiAlgo approach allows DigiByte to maintain the lowest fees of any UTXO – PoW – chain in the world. Currently fees on the DigiByte block-chain are at about 0.0001 DGB per transaction of 100 000 DGB sent. This depends on the amount sent and currently 100 000 DGB are worth around $2000.00 with the fee being less than 0.000002 cents. It would take 500 000 transactions of 100 000 DGB to equal 1 penny’s worth. This was tested on a Ledger Nano S set to the low fees setting.
Fast transaction times
Fast transactions are ensured by the conjunctive use of the two aforementioned technology protocols. The use of MultiShield and MultiAlgo allows the mining of the DigiByte chain to always be profitable and thus there is always someone mining your transactions. MultiAlgo allows there to a greater amount of hash power spread world-wide, this along with 15 second block times allows for transactions to be near instantaneous. This speed is also ensured by the use DigiSpeed. DigiSpeed is the protocol by which the DigiByte chain will decrease block timing gradually. Initially DigiByte started with 30 second block times in 2014; which today are set at 15 seconds. This decrease will allow for ever faster and ever more transactions per block.
Robust security + The Immutable Ledger
At the core of cryptocurrency security is decentralisation. As stated before decentralisation is ensured on the DigiByte block chain by use of the MultiAlgo approach. Each algorithm in the MultiAlgo approach of DigiByte is only allowed about 20% of all new blocks. This in conjunction with MultiShield allows for DigiByte to be the most secure, most reliable, and fastest UTXO block chain on the planet. This means that DigiByte is a proof of work (PoW) block-chain where all transactional activities are stored on the immutable public ledger world-wide. In DigiByte there is no need for the Lightning protocol (although we have it) nor sidechains to scale, and thus we get to keep PoW’s security.
There are many great debates as to the robustness or cleanliness of PoW. The fact remains that PoW block-chains remain the only systems in human history which have never been hacked and thus their security is maximal.
For an attacker to divert the DigiByte chain they would need to control over 93% of all the hashrate on one algorithm and 51% of the other four. And so DigiByte is immune to the infamous 51% attack to which Bitcoin and Litecoin are vulnerable.
Moreover, the DigiByte block-chain is currently spread over 200 000 plus servers, computers, phones, and other machines world-wide. The fact is that DigiByte is one of the easiest to mine coins there is – this is greatly aided by the recent release of the one click miner. This allows for ever greater decentralisation which in turn assures that there is no single point of failure and the chain is thus virtually un-attackable.
On Chain Scalability
The biggest barrier for block-chains today is scalability. Visa the credit card company can handle around 2000 transactions per second (TPS) today. This allows them to ensure customer security and transactional rates nation-wide. Bitcoin currently sits at around 7 TPS and Litecoin at 28 TPS (56 TPS with SegWit). All the technological innovations I’ve mentioned above come together to allow for DigiByte to be the fastest PoW block-chain in the world and the most scalable.
DigiByte is scalable because of DigiSpeed, the protocol through which block times are decreased and block sizes are increased. It is known that a simple increase in block size can increase the TPS of any block-chain, such is the case with Bitcoin Cash. This is however not scalable. The reason a simple increase in block size is not scalable is because it would eventually lead to some if not a great amount of centralization. This centralization occurs because larger block sizes mean that storage costs and thus hardware cost for miners increases. This increase along with full blocks – meaning many transactions occurring on the chain – will inevitably bar out the average miner after difficulty increases and mining centres consolidate.
Hardware cost, and storage costs decrease over time following Moore’s law and DigiByte adheres to it perfectly. DigiSpeed calls for the increase in block sizes and decrease in block timing every two years by a factor of two. This means that originally DigiByte’s block sizes were 1 MB at 30 seconds each at inception in 2014. In 2016 DigiByte increased block size by two and decreased block timing by the same factor. Perfectly following Moore’s law. Moore’s law dictates that in general hardware increases in power by a factor of two while halving in cost every year.
This would allow for DigiByte to scale at a steady rate and for people to adopt new hardware at an equally steady rate and reasonable expense. Thus so, the average miner can continue to mine DigiByte on his algorithm of choice with entry level hardware.
DigiByte was one of the first block chains to adopt segregated witness (SegWit in 2017) a protocol whereby a part of transactional data is removed and stored elsewhere to decrease transaction data weight and thus increase scalability and speed. This allows us to fit more transactions per block which does not increase in size!
DigiByte currently sits at 560 TPS and could scale to over 280 000 TPS by 2035. This dwarfs any of the TPS capacities; even projected/possible capacities of some coins and even private companies. In essence DigiByte could scale worldwide today and still be reliable and robust. DigiByte could even handle the cumulative transactions of all the top 50 coins in coinmarketcap.com and still run smoothly and below capacity. In fact, to max out DigiByte’s actual maximum capacity (today at 560 TPS) you would have to take all these transactions and multiply them by a factor of 10!
Oher Uses for DigiByte
Note that DigiByte is not only to be used as a currency. Its immense robustness, security and scalability make it ideal for building decentralised applications (DAPPS) which it can host. DigiByte can in fact host DAPPS and even centralised versions which rely on the chain which are known as Digi-Apps. This application layer is also accompanied by a smart contract layer.
Thus, DigiByte could host several Crypto Kitties games and more without freezing out or increasing transaction costs for the end user.
Currently there are various DAPPS being built on the DigiByte block-chain, these are done independently of the DigiByte core team. These companies are simply using the DigiByte block-chain as a utility much in the same way one uses a road to get to work. One such example is Loly – a Tinderesque consensual dating application.
DigiByte also hosts a variety of other platform projects such as the following:
The DigiByte Foundation
As previously mentioned DigiByte was not an ICO. The DigiByte foundation was established in 2017 by founder Jared Tate. Its purpose is as a non-profit organization dedicated to supporting and developing the DigiByte block-chain.
DigiByte is a community effort and a community coin, to be treated as a public resource as water or air. Know that anyone can work on DigiByte, anyone can create, and do as they wish. It is a permissionless system which encourages innovation and creation. If you have an idea and or would like to get help on your project do not hesitate to contact the DigiByte foundation either through the official website and or the telegram developer’s channel.
For this reason, it is ever more important to note that the DigiByte foundation cannot exist without public support. And so, this is the reason I encourage all to donate to the foundation. All funds are used for the maintenance of DigiByte servers, marketing, and DigiByte development.
DigiByte Resources and Websites
DigiByte
Wallets
Explorers
Please refer to the sidebar of this sub-reddit for more resources and information.
Edit - Removed Jaxx wallet.
Edit - A new section was added to the article: Why so many coins? 21 Billion
Edit - Adjusted max capacity of DGB's TPS - Note it's actually larger than I initially calculated.
Edit – Grammar and format readjustment
Hello,
I hope you’ve enjoyed my article, I originally wrote this for the reddit sub-wiki where it generally will most likely, probably not, get a lot of attention. So instead I've decided to make this sort of an introductory post, an open letter, to any newcomers to DGB or for those whom are just curious.
I tried to cover every aspect of DGB, but of course I may have forgotten something! Please leave a comment down below and tell me why you're in DGB? What convinced you? Me it's the decentralised PoW that really convinced me. Plus, just that transaction speed and virtually no fees! Made my mouth water!
-Dereck de Mézquita
I'm a student typing this stuff on my free time, help me pay my debts? Thank you!
D64fAFQvJMhrBUNYpqUKQjqKrMLu76j24g
https://digiexplorer.info/address/D64fAFQvJMhrBUNYpqUKQjqKrMLu76j24g
submitted by xeno_biologist to Digibyte [link] [comments]

Notes from Ethereum Core Devs Meeting #31 [1/12/18]

The next core dev meeting will be this Friday, January 26, 2018. The agenda and live stream link are located here.

Ethereum Core Devs Meeting 31 Notes

Meeting Date/Time: Friday 01/12/18 at 14:00 UTC

Meeting Duration: 1.5 hours

GitHub Agenda Page

Audio/Video of the meeting

Reddit thread

Agenda

  1. Testing Updates.
  2. Yellow paper update.
  3. EWASM update + update on the following related EIPs. a. EVM 2.0 - https://github.com/ethereum/EIPs/issues/48 b. Extend DUP1-16 / SWAP1-16 With DUPN / SWAPN - https://github.com/ethereum/EIPs/issues/174 c. Subroutines and Static Jumps for the EVM - https://github.com/ethereum/EIPs/issues/615
  4. Stateless client development.
  5. Add ECADD and ECMUL precompiles for secp256k1 - https://github.com/ethereum/EIPs/issues/603 [See this blog post for context].
  6. Introduce miner heuristic "Child pays for parent" (like in BTC) to combat the weird cases when transactions with 1000 Gwei stuck in the mempool (because they are dependent via nonce on transaction paying much less and not getting mined).
  7. Creating a relay network of nodes to mitigate issues described here and other transaction propagation issues.
  8. Fork release management/Constantinople.
  9. Client updates.
  10. Other non-agenda issues.

Notes

Video starts at [4:36].

[4:56] 1. Testing Updates

No updates.

[5:27] 2. Yellow paper update.

Gavin put the Yellow Paper under the Creative Commons Free Culture License CC-BY-SA. Yoichi and Nick Savers have been making progress handling the Yellow Paper PRs. There is still the somewhat unresolved issue of what should define the "formal standard" of Ethereum and should an update to the Yellow Paper or another specification be required for every new EIP. This can be discussed in more detail in future meetings when there is greater attendance.

[7:43] 3. EWASM update + update on the following related EIPs.

[7:55] General update

Ewasm contributors are currently meeting in person together in Lisbon. EWASM EIPs listed in the subpoints are not up to date and can be disregarded. People should use the github.com/EWASM/design repo. The design has been pretty much speced out in the last year. During the design phase there were 2 implementations done in parallel: Javascript and C++ (which can be integrated in cpp-ethereum and geth). Issues have been faced in building out EWASM including struggling with implementing synchronous code in Javascript/browser. Idea was to move to an asynchronous model. Currently there is not a full decision on using synchronous vs asynchronous, but we are leaning towards synchronous implementation in C++ to run a testnet in cpp-ethereum that can run pure Web Assembly contracts. Metering contract in Web Assembly is on the to-do list and doesn't rely on sync/async decision. Likely will take week to come to a decision on sync vs async. More technical discussion and a funny anecdote involving the asynchronous vs synchronous decision and the affects of the recent Spectre/Meltdown attacks start at [12:07].

[15:08] a. EVM 2.0 - https://github.com/ethereum/EIPs/issues/48

Martin Becze will be closing this EIP. It is outdated.

[15:28] b. Extend DUP1-16 / SWAP1-16 With DUPN / SWAPN - https://github.com/ethereum/EIPs/issues/174

This doesn't have to do with EWASM, it has to do with adding extra opcodes in the current EVM. It is an upgrade to EVM 1.0 which is not needed if we skip straight to EWASM.

[16:47] c. Subroutines and Static Jumps for the EVM - https://github.com/ethereum/EIPs/issues/615

Greg has been working with Seed (Gitter tag) who is writing an ELM formalization of the EIP. Greg says that there is no formal social process for deciding things like EVM 1.5 implementation so he is not sure if/when it would be implemented. Greg has been working on cleaning up the proposal for those who want to use it. Greg has some ideas around an EVM 3.0 that pulls everything together with transpilation that he hasn't started working on yet and is not sure if he will.

[20:14] 4. Stateless client development.

Piper left some comments about some development of a stateless client for sharding, but it is very early. Alexey had a blog post describing stateless clients he may re-approach later.

[21:46] 5. Add ECADD and ECMUL pre-compiles for secp256k1 - https://github.com/ethereum/EIPs/issues/603 [See this blog post for context].

This topic was brought up months ago with mixed commentary. Christian R. says that ECADD and ECMUL were never intended to be used for general purpose cryptography, but rather it was suppose to be used in conjunction with the pairing pre-compiles for a specific curve that is pairing friendly. Christian says that in the past it has been discussed that there must be a very compelling reason for adding a pre-compile to Ethereum. Silur mentioned that the Monero research team is working on a new ring signature (still unnamed) that can be viewed in the Monero repository. The EWASM team may run some tests to compare native running of the pre-compiles vs EWASM. Adding a new pre-compile would only give a constant speed-up or reduction in cost, but if we achieve the same thing in new virtual machine it will give us a constant speed-up for every conceivable routine and allows for building other schemes like Casper and TrueBit. This is easier with Web Assembly because we can use existing C code. For the moment it looks like focusing energy on adding these proposed pre-compiles would not be worth it compared to just waiting for the next VM (likely EWASM) which will allow far more speed-ups across all computational routines.

[37:00] 6. Introduce miner heuristic "Child pays for parent" (like in BTC) to combat the weird cases when transactions with 1000 Gwei stuck in the mempool (because they are dependent via nonce on transaction paying much less and not getting mined).

[Note: I tried my best to cover what was discussed here, but I am not an expert in Ethereum transactions. If you find a mistake please point it out to me. Thanks!] Agenda item brought up to get people's opinion on this topic. Currently in Ethereum there are transactions that are stuck in the mempool for a long time because of the way transaction ordering per account is handled. The nonce of a transaction must be greater than the previous mined transactions (or equal if you are trying to replace a transaction). For example you can't process transaction #27 before transaction #26 has been mined. Many of the stuck transactions are dependent on other transactions that pay a much smaller fee, but are not being mined. It seems people inadvertently send an initial transaction with too small of a fee and then more transactions at a higher nonce with a much higher fee that cannot be processed until the first small fee transaction is processed. Alexey wondered if this may pose an attack vector or if we would get a benefit from implementing "child pays for parent" like Bitcoin does. Peter explained even if you define the max amount of gas your transaction could potentially consume, there is no guarantee it will use that much and we won't know until the transaction is processed (the only guarantee is that 21,000 gas will be consumed - a plain ether transfer). The attack vector example would be someone pushing a transaction that truly consumes 3,000,000 gas and attach a transaction fee of 1 wei and then push another TX that claims to consume 3,000,000 gas but with a transaction fee of 1000gwei. From the outside it looks like I can both can be executed for profit from the miner's perspective, but in reality the 2nd transaction will be processed first and the 1st tx will be long running and indirectly punish the miner. Alexey was concerned about the mempool filling up and impact on clients due to the way nonces are handled. Peter clarified that transactions in the mempool in the go ethereum client only maintains the top 4,000 most expensive transactions. If your cheap transaction gets evicted, the expensive transactions you stacked on top of it get evicted as well because they are no longer executable due to the nonce.

[42:21] 7. Creating a relay network of nodes to mitigate issues described here and other transaction propagation issues.

A relay network in general is a group of peers and/or miners who use a peer list to quickly connect to a group of known peers before connecting to (or instead of connecting to) random peers using network discovery. Alexey conjectured that this may create a powerful ring of network players who can share transactions very quickly and hurt the little guys on the outside (hurting the idea of this being a mesh network of peers). Clarifications were made about the issues involving transaction propagation issues with nodes with high transaction throughput such as Infura and Bittrex. Clients suddenly stop pushing transactions or cannot keep up with the blockchain when they are pushing out so many transactions. Hudson will work towards exploring this issue more and connecting the people with the issues with the devs.

[49:45] 8. Fork release management/Constantinople.

Hudson will be working on writing up a starting plan to discuss potential release management issues. BitsBeTripping sent Hudson some good material about project management that he will review and bring to the next meeting. We need to start discussing Constantinople sooner rather than later.

[52:55] 9. Client updates.

10. Other non-agenda items

[1:05:42] Question: Will we see any scaling improvements from Constantinople?

Answer is no because it potentially includes the first steps of the Casper consensus protocol and some account abstraction EIPs, but both of those do not alleviate scaling issues. Sharding would alleviate some of the issues. We are currently mostly bound by database and processing speed due to the database. Short term there are a lot of client improvements that can be accomplished to improve disk I/O, but long term things like sharding will be necessary. The Eth Research site has a lot of interesting threads about sharding including merkle tree formats to be used and ideas around asynchronous accumulators

[1:09:57] Decision process for EIPs?

Needs to be improved. Hudson and others will work on updating EIP #1 and other improvements in Q1. Nick Savers has been added as an EIP editor. Yoichi has been added as an editor. Both are doing a great job.

Attendance

Alex Beregszaszi (EWASM/Solidity/ethereumJS), Alex Van de Sande (Mist/Ethereum Wallet), Alexey Akhunov (Turbo Geth), Ben Edgington (Consensys/Pegasys), Casey Detrio (Volunteer), Christian Reitwiessner (cpp-ethereum/Solidity), Daniel Ellison (Consensys/LLL), Greg Colvin (EVM), Hudson Jameson (Ethereum Foundation), Hugo de la Cruz (ethereumJS/EWASM), Jake Lang (EWASM), Jared Wasinger (ethereumJS/EWASM), Martin Becze (EWASM), Mikhail Kalinin (Harmony), Paweł Bylica (cpp-ethereum/EWASM), Péter Szilágyi (geth), Silur (ethereumJS / EWASM)
submitted by Souptacular to ethereum [link] [comments]

Groestlcoin Release September 2018

Introduction

As always, the past 3 months since 22nd June have been crazy busy. The bears might still be around, but the show must go on and of course has not slowed the Groestlcoin development team in the slightest. Here’s a quick overview of what has already happened since the last release: - Integrated into the bitbns exchange, with the ability to buy Groestlcoin directly with the Indian Rupee. - Groestlcoin Rebrand Vote – Whilst there was much talk and push for a rebrand vote, the overall result was almost unanimously in favour of keeping our unique and conversation-starting name. With just 83 votes to Rebrand, and 2577 votes to No Rebrand. Thank you for all who voted, the funds raised are being used to fund ongoing hosting and development costs. - Integrated into the Cryptobridge exchange. Cryptobridge is a popular decentralised exchange where you always hold the private keys to your funds, only YOU have access to them. - Groestlcoin has been added to SimpleSwap – Groestlcoin can now be swapped with over 100 other cryptocurrencies, without signing up! - Groestlcoin has been added to UnoDax, one of the leading cryptocurrency exchanges in India, with TUSD, BTC and INR trading pairs. - Groestlcoin has been added to SwapLab.cc, where you can buy Groestlcoin using Bitcoin and over 50 other altcoins. Purchasing with VISA/Mastercard is coming VERY SOON. Discussed later: - Groestlcoin has been listed on #3 largest exchange in the world on volume, Huobi Global! More on this to come further on in the announcements. - Groestlcoin has been added to the Guarda Multi-Currency Wallet. - Groestlcoin has been added to Melis Multi-Device, Multi-Account, Multi-Platform, Multi-Signature advanced wallet! Already this list is far more than most other cryptocurrencies have achieved in the past 3 months. But this is just the tip of the iceberg of what has been developed.

What's been Happening?

GRSPay Released

We are so excited for this, that it has it's own separate reddit thread. Head over there now at https://www.reddit.com/groestlcoin/comments/9ikr5m/groestlcoin_releases_grspay/? to see more on this!
https://www.melis.io/assets/logo-navbar-4b6f0d372f15b2446d3fa4c68f346e4fb08ee113941186cee58fd6135f3f8b7d.svg

Melis Wallet

The the most advanced wallet for Bitcoin, Bitcoin Cash, Litecoin and now Groestlcoin.
With Melis you have the complete control of your bitcoins and private keys, you can define spending limits policies and make use of two or more factors authentication. Melis is open source, published on GitHub.

How Melis Works?

You can create as many accounts as you want. An account is a part of your wallet that can be customised to your requirements. You can choose how many co-signers are required to spend funds. The accounts are completely independent and act like separate wallets from each other but can be accessed via the same details. A core feature of Melis is the ability to set a ‘primary’ device. With this you can set an account as ‘Secure’ so it is only viewable (and accessible at all) from the Primary device. You can have a savings account hidden from the outside world whilst also having your ‘spending’ funds available on the go. With Melis you can create a multi-signature account between N people, where up to N signatures are required to sign a transaction, choosing if any of those should be mandatory.
Core Features:
https://guarda.co/assets/images/1PGo4ID.svg?1537791124643

Guarda Wallet

Safer than ever! Desktop Light Wallet - Anonymous and fast!
With Guarda Multi-currency Desktop Light Wallet you don’t need to register. Guarda has no access to your private keys or funds. You can receive, send, store, buy and exchange cryptocurrencies in complete anonymity and safety. All these features are available on Linux, Windows or MacOS. Choose the one that suits you!
More info about Guarda wallet on www.guarda.co
https://holytransaction.com/images/logo.png

Integrated into HolyTransaction

What is HolyTransaction?

HolyTransaction gives users access to the crypto world with a universal cryptocurrency wallet and instant exchange.

Features

For more information, visit Holy Transaction here.
https://www.groestlcoin.org/wp-content/uploads/2018/09/next-grs-groestlcoin.jpg

Integrated into NEXT Wallet

What is NEXT?

NEXT is a modern, next-generation stylish open-source Desktop wallet.

Features

For more information, visit NextWallet here.
https://blockchainfinancial.com/mediaserve2018/09/admin-06143647-bcf_logo_vec_256x256.png

Integrated into Blockchain Financial

What is Blockchain Financial?

Blockchain Financial is a set of web based services for individuals and companies that want to make things happen with the Cryptocurrencies Ecosystem. - For those that don't know anything about cryptocurrencies, we offer tools that will let them receive, send and operate with an assortment of coins. - For those that are already riding the wave, we offer tools that will let them do all those things that they weren't able to do.

Blockchain Financials mission

We're not here to reinvent the wheel. We're here to make it run smoother for you, and we provide some of the most useful services you'll find on the internet, made in a way that is easy to understand and use on a daily basis. In short, we're a bunch of people that claim to be Crypto Evangelists. We strongly believe in cryptocurrencies, and our main promise is to push them up so more people get involved and take all the advantages they offer.

More information from Blockchain Financial

Back in 2014, the world was taken by storm when Facebook approved the first cryptocurrencies tipping apps. The first was for Dogecoin, and the second was for multiple coins.
The project was hosted on whitepuma.net, and persisted for almost two years, built up a massive user community and gave a home to Bitcoin, Litecoin, Dogecoin and dozens of other bitcoin-based altcoins.
After very active months, the tipping hype started to fade away. Then, the developers decided to jump into the next stage: bringing not only tipping, but also mining and a widget that could be embedded on websites to allow everyone to accept payments. Sadly, the work was never completed because the project started to require an unsustainable amount of resources. Then, in a painful decision, a shutdown was announced by December 2015.
A couple of months after whitepuma.net was closed, the source code was released by its creator as Open Source on GitHub. But it wasn't maintained.
Now, some of the original members of the dev and admin teams gathered up with a handful of the WhitePuma's elite users, and decided to make something good with the best pieces of the old source code. That, with fresh new ideas and the power of the BardCanvas engine, synthesized the core of Blockchain Financial.
More info about Blockchain Financial wallet on .
For more information, visit [Blockchain Financial](www.blockchainfinancial.com)
https://www.huobi.com/image/logo.aeb4723.svg

Groestlcoin Listed on Huobi

Who are Huobi?

Huobi was founded in China and is now based in Singapore, with offices in Hong Kong, South Korea, Japan and the North America, currently sitting #3 in volume on Coinmarketcap. Huobi is a great leap forward for our growing presence in Asia and we are very excited to be listed here!
You can find the official Huobi announcement here.

Groestlcoin Core v2.16.3 - Please Update ASAP

A new major Groestlcoin Core version 2.16.3 is now available for download which includes both a Denial of Service component and a critical inflation vulnerability, so it is recommended to upgrade to it if you are running a full Groestlcoin node or a local Groestlcoin Core wallet.
v2.16.3 is now the official release version of Groestlcoin Core. This is a new major version release with a very important security updates. It is recommended to upgrade to this version as soon as possible. Please stop running versions of Groestlcoin Core affected by CVE-2018-17144 ASAP: These are 2.13.3 and 2.16.0.
As a result in this, all exchanges and services have been asked to upgrade to this version, so please be patient if wallets go in to maintenance mode on these services.

What's new in version v2.16.3?

This is a major release of Groestlcoin Core fixing a Denial of Service component and a critical inflation vulnerability (https://nvd.nist.gov/vuln/detail/CVE-2018-17144) exploitable by miners that has been discovered in Groestlcoin Core version 2.13.3 and 2.16.0. It is recommended to upgrade to 2.16.3 as soon as possible. If you only occasionally run Groestlcoin Core, then it's not necessary to run out and upgrade it right this second. However, you should upgrade it before you next run it. If you know anyone who is running an older version, tell them to upgrade it ASAP. Stored funds are not at risk, and never were at risk. At this time we believe over half of the Groestlcoin hashrate has upgraded to patched nodes. We are unaware of any attempts to exploit this vulnerability. However, it still remains critical that affected users upgrade and apply the latest patches to ensure no possibility of large reorganizations, mining of invalid blocks, or acceptance of invalid transactions occurs.

The Technicals

In Groestlcoin Core 2.13.3, an optimization was added (Bitcoin Core PR #9049) which avoided a costly check during initial pre-relay block validation that multiple inputs within a single transaction did not spend the same input twice which was added in 2012 (Bitcoin Core PR #443). While the UTXO-updating logic has sufficient knowledge to check that such a condition is not violated in 2.13.3 it only did so in a sanity check assertion and not with full error handling (it did, however, fully handle this case twice in prior to 2.1.0.6). Thus, in Groestlcoin Core 2.13.3, any attempts to double-spend a transaction output within a single transaction inside of a block will result in an assertion failure and a crash, as was originally reported. In Groestlcoin Core 2.16.0, as a part of a larger redesign to simplify unspent transaction output tracking and correct a resource exhaustion attack the assertion was changed subtly. Instead of asserting that the output being marked spent was previously unspent, it only asserts that it exists. Thus, in Groestlcoin Core 2.16.0, any attempts to double-spend a transaction output within a single transaction inside of a block where the output being spent was created in the same block, the same assertion failure will occur. However, if the output being double-spent was created in a previous block, an entry will still remain in the CCoin map with the DIRTY flag set and having been marked as spent, resulting in no such assertion. This could allow a miner to inflate the supply of Groestlcoin as they would be then able to claim the value being spent twice.
Groestlcoin would like to publicly thank Reddit user u/Awemany for finding CVE-2018-17144 and reporting it (https://lists.linuxfoundation.org/pipermail/bitcoin-core-dev/2018-Septembe000064.html). You deserve gratitude and appreciation from cryptoworld, and you have ours. If you want to support him for his work, please consider donating to him on his bitcoin cash address: bitcoincash:qr5yuq3q40u7mxwqz6xvamkfj8tg45wyus7fhqzug5
http://i.imgur.com/3YhyNZK.png

Groestlcoin Electrum-GRS 3.2.2 - Ledger & Trezor Edition

What is Electrum-GRS?
Electrum-GRS is a lightweight "thin client" groestlcoin wallet Windows, MacOS and Linux based on a client-server protocol. Its main advantages over the original Groestlcoin client include support for multi-signature wallets and not requiring the download of the entire block chain.

Changes:

http://i.imgur.com/3YhyNZK.png

Electrum-GRS Mobile Android

What is Electrum-GRS Mobile?

Electrum-grs is a lightweight "thin client" groestlcoin wallet Android based on a client-server protocol. Its main advantages over the original Groestlcoin client include support for multi-signature wallets and not requiring the download of the entire block chain.

Changes

Groestlcoin EasyVanity Released

Groestlcoin EasyVanity is a Windows app is built from the ground-up in C# and makes it easier than ever before to create your very own bespoke Groestlcoin address(es), even whilst not connected to the internet! You can even generate multiple keys with the same prefix and leave it on overnight whilst your CPU or GPU collects and stores these addresses locally.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then Groestlcoin EasyVanity is the right choice for you to create a more personalized address.

Features

• Ability to continue finding keys after first one is found • Includes warning on startup if connected to the internet • Ability to output keys to a text file (And shows button to open that directory) • Ability to make your match case sensitive (Where possible) • Show and hide the private key with a simple toggle switch, and copy the private key straight to your clipboard • Show full output of commands • Includes statistics whilst the application is running • Ability to choose between Processor (CPU) and Graphics Card (GPU) • Automatically detects 32 or 64 bit systems • Features both a Light and Dark Material Design inspired Themes • EasyVanity's search is probabilistic, and the amount of time required to find a given pattern depends on how complex the pattern is, the speed of your computer, and whether you get lucky. • EasyVanity includes components to perform address searching on your CPU (vanitygen) and your OpenCL-compatible GPU (oclvanitygen). Both can be built from source, and both are included in the Windows binary package. • Prefixes are exact strings that must appear at the beginning of the address. When searching for prefixes, Easyvanity will ensure that the prefix is possible, and will provide a difficulty estimate. • The percentage displayed just shows how probable it is that a match would be found in the session so far. If it finds your address with 5% on the display, you are extremely lucky. If it finds your address with 92% on the display, you are unlucky. If you stop EasyVanity with 90% on the display, restart it, and it finds your address with 2% on the display, your first session was unlucky, but your second session was lucky. • EasyVanity uses the OpenSSL random number generator. This is the same RNG used by groestlcoin and a good number of HTTPS servers. It is regarded as well-scrutinized. Guessing the private key of an address found by EasyVanity will be no easier than guessing a private key created by groestlcoin itself. • To speed up address generation, EasyVanity uses the RNG to choose a private key, and literally increments the private key in a loop searching for a match. As long as the starting point is not disclosed, if a match is found, the private key will not be any easier to guess than if every private key tested were taken from the RNG. EasyVanity will also reload the private key from the RNG after 10,000,000 unsuccessful searches (100M for oclvanitygen), or when a match is found and multiple patterns are being searched for. • Free software - MIT. Anyone can audit the code. • Written in C# - The code is short, and easy to review.

Groestlcoin Sentinel (Android & Blackberry) – Mainnet + Testnet

What is Sentinel?

Groestlcoin Sentinel is the easiest and fastest way to track/receive/watch payments in your offline Groestlcoin Wallets. Groestlcoin Sentinel is compatible with any standard Groestlcoin address, BIP44 XPUB (Extended Public Key) BIP49 YPUB and BIP84 ZPUB
Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets). Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that particular wallet.

What's New?

The P2SH paperwallet supports creating P2SH paperwallets in bulk, keypair generation with QR codes and sweeping tool. Groestlcoin believes strongly in privacy, the live version does not collect and store IP or transaction data.
Changes
Features
The BECH32 paperwallet supports creating BECH32 paperwallets in bulk, keypair generation with QR codes and sweeping tool. Groestlcoin believes strongly in privacy, the live version does not collect and store IP or transaction data.
Features
![WebWallet](https://i.imgur.com/Z2oj7bj.png)

Groestlcoin Web Wallet Update 1.4

What is Groestlcoin Web Wallet?
Groestlcoin Webwallet is an open source, multisignature, HD Wallet and more! Webwallet is a a open source browser based Groestlcoin webwallet.
Webwallet is a playground for Groestlcoin in javascript to experiment with. It supports multisig, OP_HODL, RBF and many more. Groestlcoin believes strongly in privacy, the live version does not collect and store IP or transaction data.
Changes:
submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Cocos-BCX:The decentralized gaming application & crypto assets creation platform

Cocos-BCX:The decentralized gaming application & crypto assets creation platform

I. Project Overview

Cocos-BCX is a platform used for the development, operation, management and transfer of decentralized applications and in-application assets on the blockchain ecosystem. The platform mainly includes three function modules:
(1)The application development framework that supports multiple operating systems and various blockchain environments.
(2)Completely scripted, componentized and data-driven application development tools;
(3)An improved blockchain system, which is oriented to high performance applications and based on graphene technology framework, and its related functional components.
Cocos-BCX can allow developers to perform programming, debugging, and publishing of decentralized applications oriented to the blockchain environment, and hybrid architecture applications. Meanwhile, the platform integrates the distributed user account system, wallet and digital asset circulation platform based on the blockchain, which can realize the permanent saving and cross-chain use of in-application assets.

II. Project evaluation

(一) Market analysis

1. Market conditions | 8 points

The organizing pattern of productivity dominated by governments in some areas or industrial domains is apt to change in the context of bottlenecks existing for global scientific and technological progress, rising resource consumption, an aging population, and intensified geopolitical conflicts. In particular, in 2008, when Nakamot published his thesis "Bitcoin: A Peer-to-Peer Electronic Cash System", discussions on blockchain and digital currency have gradually extended from technological aspects to economic, social and political, and other fields. The general public have begun to pay close attention to the impact of blockchain on social development as well as the role of digital currency in the world economy. Based on the decentralized characteristics of the blockchain and the vibrant vitality of the digital economy, the general public has enough confidence to predict that the decentralized "digital assets" will be a sweeping trend in the future, and will derive new business models and social values.
At the same time, in the development process of decentralized applications of different types, the game industry enjoys unique development advantages, because the game's production mode is the most sophisticated, enjoys the highest degree in terms of commercialization, and is one of the scenarios with the most profound foundation in terms of developers and users.
u Analysis: The game field has a huge room for development, which is highly consistent with the characteristics of the blockchain, and accords with the future development tendency of the digital economy.
The digital asset economy model carried by the project through the blockchain technology will assetize the content produced by the developer, enable the developer to continue reaping benefits during the use, management and transfer of his assets, and provide him with a convenient, decentralized game distribution channel; meanwhile, it helps players to transform the data formed by time and energy as well as the props they obtain as a result of their consumption into the assets that can be safely stored and circulated, offering players the right to manage and commercialize them.

2. Competition | 8 points

Since the last century till now, owing to the sustained efforts and promotion by a variety of IT technology game enterprises, the national and even global online game market is developing by leaps and bounds. If there is no systematic risks, such as policy regulation, vicious incidents and other factors, there will be no smooth and endless development momentum unless something unexpected happens. However, an objective analysis reveals that the current online game market is still dominated by IT technology companies, and even in a controlled and monopolized development, which, of course, also brings substantial profits, such as Tencent, Blizzard Tech.
u Analysis: It can be predicted that the Cocos-BCX project will hardly have any direct competitors in the strict sense for the time being, but will encounter a marginal pressure competitive environment from two dimensions. In summary, the classical IT game companies at home and abroad are massive in size and have obvious capital advantages. However, the Cocos-BCX project has an advanced philosophy and cutting edge technology, and thereby enjoys first-mover advantages for a breakthrough; The blockchain game project of the same business is currently marked by wide participation and generic applicability. But in comparison, the Cocos-BCX game industry has such advantages as a salient background, special project orientation and sophisticated development in technical modules, and therefore has greater development potential.

(二) Token Status

1. Token situation | 6 points

(1) Basic situation of Token
Token name: COCOS
Total tokens in circulation: 100 billion
Consensus mechanism: DPOS
(2) Token usage and allocation
Part I 82%: Cocos-BCX is used for the platform community construction in various ways, including but not limited to the witness' block reward, incentives for platform ecological developers, global community construction, marketing and promotion, industry alliances, eco-investment, research, financial and legal compliance. The use of this part of Cocos-BCX includes swapping by means of the consensus work contributions, free gifts, gifts in exchange for service, and gifts in exchange for other tokens, etc.
Part II, 18%: Cocos-BCX is intended as incentives for the sponsoring team of the project. The incentive part will set up a locking mechanism, which will be issued and unlocked one-third at the end of each year after Token generation, and the issuance will be completed within three years.

https://preview.redd.it/sahtuohmtb821.jpg?width=684&format=pjpg&auto=webp&s=324cbde0e5911f219649d8a64470dc3d70ecdb7f
u Analysis: The use of Token is mainly divided into two parts, among which, 82% is used for project development and construction. The remaining 18%, which has a locked position mechanism, is intended for team incentive and construction. The use design is rather rational, but the team part is slightly higher. Given that the industry is in the initial stage of development, it is of great importance to seize the first opportunity and acquire early traffic users. It is suggested that the proportion of Token used by the team be reduced slightly, which is more conducive to the long-term development of the project. It should be noted that the original holding distribution of Token has not been queried via the official channel, while this link for the conventional blockchain project are basically disclosed. Meanwhile, from the standpoint of ordinary investors, Token’s original holding ratio is also one of the important parameters for its investment.

2. Ecological cycle | 8 points

(1)The Token (COCOS) positioning of the platform: circulation media and governance proof in eco-economic activities
COCOS not only serves as a value exchange carrier and community participation proof for Cocox-BCX, but its orientation as a basic pricing Token is likely to play a critical role in the digital asset ecosystem. With the continuous development of the industry, a large quantity of decentralized digital assets will exist in multiple blockchain ecosystems according to different standards in the future, and the value existing in asset pricing media transcending the chain ecology will be infinitely magnified.
, which is specifically manifested in that developers and users can evaluate, compare, trade and manage digital assets of different chain ecosystems, worldview content, and technical standards based on COCOS. Meanwhile, as a primary and basic pricing medium, COCOS is positioned to become the necessary conditions for the blockchain industry to develop and trade financial products and derivatives of digital assets in the future.
(2)Basic use model of Token (COCOS)
Ø Value exchange medium within the platform ecosystem;
Ø Entrusted consensus equity share representative of the Cocos-BCX public blockchain;
Ø The reference and basis for the measurement of the participation in and contribution to the platform community.
(3)How to obtain Token (COCOS)
Ø Value creation: It includes the contribution of the behavior of creating digital assets, that is, developing games, making props, etc.
Ø Platform contribution reward: Users who contribute to the Cocos-BCX community is entitled to COCOS;
Ø Market transaction: Selling the prop assets obtained in the game to get COCOS;
Ø Behavioral incentives: Various effective behaviors within the Cocos-BCX platform, community and platform games will be converted into COCOS
according to a certain contribution degree.
u Analysis: The use model, scenario application, acquisition method, market orientation, etc. for the Token ecosystem design are all well deliberated, to be verified by the market.
The ecosystem design of the Token project not only takes the macroscopic use model and scenario application, but also gives a detailed description of the acquisition method. Another point that must be pointed out is that it has a clear market orientation and future prospect as soon as the design begins, therefore, in general the Token ecosystem design is well-considered and far-sighted. However, for the volatile blockchain market, the crux depends on whether the ecological design philosophy can keep pace with the times, which is very essential. In a word, in the face of massive uncertainties, it needs to be finally verified by the market.

(三) Team member

1. Founder | 8 points


https://preview.redd.it/6xhhabgntb821.jpg?width=200&format=pjpg&auto=webp&s=f8b038f4b4016724adf160c180c1eab3fb86aa1b
Haozhi Chen
China's renowned Internet serial entrepreneur, and has successively led and participated in the creation of Joyo.com, Xcar.com.cn, and cdn.yeeyan.org since 1999, and founded Chukong Technology in 2009. Chukong is a leading game development and distribution enterprise in China and a major maintainer and supporter of the Cocos-BCX global open source game engine and developer community.

https://preview.redd.it/t5siu9cotb821.jpg?width=200&format=pjpg&auto=webp&s=262123cfe0f40dbc87177d62ff57bd9e270a12cf
Xiaolong Yang
With over 14 years of experience in technology entrepreneurship and investment, he once co-founded China's leading entertainment social networking company. As an investor, he once worked for China's leading private equity fund, during which period, he led and participated in investment projects totalling over 1 billion US dollars, and realized the exit of some projects at home and abroad. His interests and expertise mainly concentrate on information technology of the global primary market and secondary market in the later stage, and macro multiple asset category investment, and has a profound understanding of the financial market mechanism and asset pricing. He is also an investment partner in China's major technology investment fund and provides counselling for Chinese and American hedge funds, venture capital funds and large enterprises.
u Analysis: Chen Haozhi, as a founder, has rich experience in the game industry, and enjoys widespread networking and abundant resources in the industry as being one of the early Internet entrepreneurs; Another founder, Yang Xiaolong, has a strong experience in technology venture capital investment, and has the expertise for global investment layout. On the whole, two co-founders have a prominent advantage in overall industry background and integrating resources.

2. Founding team | 8 points


https://preview.redd.it/15ytlu4ptb821.png?width=877&format=png&auto=webp&s=26839b00d4921c925431e8f0be337c9828e0eb49
Kevin Yin: An early contributor of CocosChina community, NOI winner, and ACM guest. A senior developer of blockchain, and having years of experience in compilation and distributed computing. An investor of the blockchain technology.
Jane Jin: Responsible for CocosChina community, the "Aipuworks" incubator, etc., and an expert of the Techincal Committee for Blockchain, China Software Industry Association. Bachelor of Economics, Zhejiang Gongshang University, and mini-EMBA of Tsinghua University. He once served important functions in "Fortune Global 500" including Lucent, Nortel, NSN, Nokia, Intel and other multinational companies in the marketing, sales, executive and developer relationship domain.
James Jeon: Responsible for the business development strategy and implementation of the project's South Korean section. From 2012 to 2015, he served as CEO of Gurum Company, a South Korean subsidiary of Chukong Technologies, earning an annual revenue of over $30 million from the scratch for the South Korean company and leading the South Korean subsidiary in going public successfully.
Frederick Lim: Responsible for the business development strategy and implementation of the project's South Korean section. From 2014 to 2015, he served as co-CEO of Gurum Company, and was once the director of the Strategic Investment Department of Hyundai Group, responsible for investment in Internet, communication, telecommunications and other fields. He is a doctor of Engineering Technology, Sungkyunkwan University, South Korea.
Hirokuni Fujita: originally head of the Japanese subsidiary of Chukong Technologies. He graduated from Graduate School of Arts and Sciences, The University of Tokyo, majoring in Interdisciplinary Cultural Studies.
Jason: preacher of the Cocos-BCX community and meanwhile, senior manager of the Cocos 2d-x global community. He started to program on the Commodore-64 computer when he was 8. In addition to developing the community, he was keen on studying mathematics, finance, C++ and improving his Chinese proficiency.
Qinzhou Wang: Since entering the game industry in 2009, he has worked in the brand market in ZOL. Com. CN, Howell Expo, host of ChinaJoy, and is responsible for the brand market in Chukong Technologies.
u Analysis: The special technological talent construction of the team technicians needs to be further strengthened. At present, there is a blockchain technician. The game background and the advantages of the international architecture building enjoy prominent advantages, and there are sufficient team members on the strategic level and in the aspect of ecological construction. It is worth mentioning that team building is stable, and there is a high level of consensus among team members, which is conducive to the robust development of the project.
One member of the founding team has experience in the blockchain project development, that is, Chief Technical Officer, who is a senior blockchain developer. He has many years of experience in compiling and distributed computing, and is also a technology investor of blockchain.
In the early stage, owing to the demand of the game industry in the Japanese and Korean markets, Japanese and Korean market leaders were specially arranged in the early team structure of Chukong Technologies. In particular, due to the prosperity and popularity of the game industry in the Korean market, two co-leaders were specially arranged for the Korea market, responsible for strategic and investment issues respectively.
Consultant Team | 8 points

https://preview.redd.it/7d9dp2wptb821.jpg?width=558&format=pjpg&auto=webp&s=39fd3b0aa342403493df250d99c09472c48e0c72
Zhe Wang: Founder of the Cocos engine, and CEO of Xiamen Yaji Software Co., Ltd. He graduated from Department of Electronics, Nanjing University, and later studied a postgraduate program at Department of Management Science, Xiamen University. He created the Cocos engine in 2011, which currently has 1.1 million registered developers worldwide and 300,000 monthly active developers in over 200 countries and regions in the world. The Cocos engine has arrested the attention of platform vendors at home and abroad, and has established a long-term cooperative partnership with Microsoft, Google, ARM, Intel, Qualcomm, Samsung, Huawei and Tencent, etc.
Edith Yeung: One of some "Silicon Valley's Must Meet" investors as covered in Inc magazine. She is the head of 500 Startups, Silicon Valley's famous venture capital company and incubator in Greater China, and meanwhile, manages a Mobile Collective fund worth tens of millions of dollars. She has invested in over 40 mobile Internet, VR, AR and AI start-ups, including Hooked (App store's No. 1 reading App), DayDayCook (one of Asia's largest food communities), Fleksy (acquired by Pinterest), Human (acquired by Mapbox), AISense and so on.
u Analysis: The consultant team has obvious advantages in technological achievements, rich experience in technology innovation investment and incubation experience for startups.
The consultant team consists of a Maker-oriented technical talent and two venture capital managers with a senior venture capital background, among whom, Wang Zhe, technical consultant, graduated from Department of Electronics, Nanjing University and CEO of Xiamen Yaji Software. Wang is the founder of Cocos-BCX engine. At present, the Cocos engine has 1.1 million registered developers and 300,000 monthly active developers in over 200 countries and regions worldwide.

(四) Tech Analysis

1. Tech highlights | 9 points

(1) Smart contract system which can be updated iteratively: The smart contract system, represented by Ethereum, is not subject to modification once its definition is published, making it difficult to meet the volatile demands of market. Therefore, an iterative smart contract system is designed to address this pain spot.
(2) Prop circulation platform: Unlike conventional game transaction platform, Cocos-BCX's decentralized digital asset circulation platform does not have intermediary agencies. Players can complete the transfer and purchase of non-homogeneous assets, including "game gold coins" and prop assets acquired in the game on the prop circulation platform. In the whole process of transfer, the platform will adopt smart contract for automatic matching to help users complete the transfer process more efficiently.
(3) Game interactive operation environment:
Based on the judgment of the operation environment characteristics of blockchain games in the future, Cocos-BCX has designed a set of integrated operation environment that accommodates various types of APPs, as well as the supporting interoperability interface. Combined with COCOS Creator, it simplifies the process of docking game programs and blockchain, making intra-chain interaction transparent to developers, and allowing conventional game developers to develop or migrate blockchain game without a threshold.
(4) Mapping gateway that supports multi-chain and asset riveting:
Cocos-BCX provides a set of mapping gateways used for the automatic mapping of game gold coins and props. Under the unified value measurement system, it realizes the smooth transition of different in-chain game content and different platform content. The content that can be used for mapping includes game gold coins, game equipment data, etc.
(5) Transaction authentication mechanism that prevents BP/developers from cheating:
BP, as the core of transaction processing and communication of the whole network, can know the processing result of the latest transaction prior to general nodes. Therefore, BP enjoys a priority for information with timeliness or confidentiality
, as compared with general nodes, so it has a cheating potential in terms of
information acquisition. To address the drawbacks of this technical link, five modular confrontation mechanisms has been specially designed to hold the likelihood of BP/developer cheating at bay.
(6) Economies Principle Design of Cocos-BCX:
The Cocos-BCX platform carries the game assets value created by developers by providing a complete set of functional components including the underlying public blockchain, digital property management, and exchanges. Its technology and governance structure design, based on the graphene standard, has the economic attributes corresponding to the DPoS consensus mechanism.
u Analysis: There are a multiplicity of technical highlights in that the overall technology construction shows characteristics such as rigid logic and prominent modularity, and various technical solutions and mechanisms with a strong pertinence have been put forward.
Based on the market pain spots of the game industry, and combined with the development opportunities of blockchain technology, the Cocos-BCX project puts forward a vision system to create consistence between the content producer and consumer in the digital world. In view of the initial intention of the project and the relatively profound background of the game industry, the overall technical structure design of the project is highly targeted and has a strong logic, which can be described as closely connected with each other. Based on the large technical framework system, each technical link and organization also has a strong sense of target and logical gene, and on this basis, many modular and modified technical programs or mechanisms have been proposed. However, it is worth noting that the synergy of a series of highlight technologies remains to be verified and examined. Meanwhile, attention should also be paid to the practicability and rationality.

2. Impossible Triangle | 7 points

(1) Decentralization
Ø Low fork risk: Cocos-BCX uses the DPoS consensus mechanism, which does not require miners to use mining machines for mining, and thereby it can effectively avoid the impact of centralized computing on the entire basechain, which in turn reduces a low fork risk. Under the DPoS mechanism, if a witness wants to fork by voting, it is necessary to guarantee that over one third of the witnesses violate this mechanism at the same time.
Ø Improved DPOS consensus mechanism: The consensus layer of the Cocos-BCX test chain adopts the DPoS consensus algorithm. The advantage characteristics of the improved edition DPOS are as follows: all active witnesses have the same block predefined probability as the witnesses' predefined algorithm in the DPoS consensus algorithm, which ensures that the block probability of all witnesses is consistent with the block reward.
Ø Lightweight node: In Cocos-BCX design, lightweight node is essentially an environment with chain interoperability. Unlike the whole node, the lightweight node does not require to synchronize the whole network data. Instead, it needs the contract information and environment data required for synchronous running. This design can greatly reduce the data volume and synchronization time required for node synchronization, enabling the in-chain game terminal software to have a capacity which is actually used and a plausible time cost.
(2) Security
Ø Player autonomy and asset security: Because of the open and transparent characteristics of the blockchain network, the digital asset information obtained by players in the game can be viewed through the blockchain.
Ø Guarantee by modern cryptography: Modern cryptography is a technology based on mathematics. Currently, it has been widely used in many industries in the Internet domain. Common symmetric encryption technologies include AES encryption used for WiFi, and asymmetric encryption algorithms (public and private key cryptography) RSA, ECC, etc., among which, ECC (Elliptic Curves Cryptography) is an encryption algorithm commonly used in the blockchain field.
Ø A transaction verification mechanism that prevents BP/developers from cheating: BP enjoys a priority compared with general nodes, so it has the probability to cheat in terms of information acquisition. Therefore, the BCX program has designed a set of transaction execution, messaging, and operating mechanisms to address the possible links that allow cheating by BP and developers.
Ø Iterative updated smart contract system: It can provide logical updating and loophole repair for the in-chain game smart contract, thus ensuring the security and timeliness of the smart contract.
(3) Expandability:
Ø Strong expandability of the top-level design of the project
The expandability of Cocos-BCX is powerful, which is specifically shown in a decentralized game production and an overall solution to the game economy operation established by means of the game engine, development environment and Cocos-BCX game chain.

https://preview.redd.it/xm5n7esrtb821.jpg?width=1207&format=pjpg&auto=webp&s=c3daa5d913560c0e8143c0635374596566bdbfc9
A business ecosystem is constructed based on the above overall solution, with the purpose of connecting the global game ecosystem. The main ecological links include developers, users, creative content, key ecological links and blockchain system, etc.

https://preview.redd.it/h4ssn41ttb821.jpg?width=1276&format=pjpg&auto=webp&s=ca6244d17b9745ce41b5be235f75a39f8a8af051
Ø Expanded design of specific technologies and mechanisms
  1. Multi-platform game integration running environment: This platform is mainly characterized by four features, consistent and perfect chain interoperability interface, downward transparent accepting mode, encapsulated atomic operation and multi-platform compatibility.
  2. Interactive interface of blockchain:
Cocos-BCX provides a chain-interactive development environment so that developers can easily interact with the chain through this set of environment. Meanwhile, its blockchain interactive development environment provides development components compatible with multiple working platforms, including SDK for the Android and iOS system, javascript libraries for front-terminal web applications, and python and PHP libraries for back-terminal applications.
u Analysis: The expandability of the project's "impossible triangle" shows the most prominently, and the decentralized attribute is the weakest, whose security is between the two. However, the project takes the three into consideration in terms of the technical mechanism and program function. Yet, the focus is different.
The project interprets the “impossible triangle” by means of thinking and design that focus on technical aspects and key issues.
The security level first guarantees the assets security and freedom of the ecosystem participants, and meanwhile ensures the rationality and security of the overall framework design, and finally takes its system updating and safe recovery into consideration mainly by means of player autonomy, modern cryptography and transaction verification mechanism that prevents BP/developers from cheating.

3. Development difficulty | 8 points

According to the summary of the project white paper, the blockchain game can be generally divided into four developmental stages.
(1)Using the homogeneous assets for the settlement of the game "gold coins";
(2)Free conversion of the game "gold coins" and props;
(3)In-chain operation of critical rules;
(4)Overall in-chain operation of the game
The game in-chain operation is the final form of the industry. Based on the above summary, Cocos-BCX proposes the future development prospect, mainly represented in seven aspects:
(1)Players having a lightweight full-node environment;
(2)The service stack operating in the blockchain environment;
(3)The game engine as one of the node infrastructures;
(4)Providing a joint development/debugging environment including engine, visual IDE, and chain network interactive interface;
(5)a set of asynchronous consensus tasks between nodes to ensure the trustworthiness of the engine environment. This consensus may be based on the discrimination of feature code of
the engine critical function's target code
(6) The game code (contract) is executed by the secure virtual machine controlled by the engine, and the key numerical calculation of the contract may adopt
the “Trusted Execution Environment” scheme, which is executed independently of the main part of the contract;
(7) The key process of the contract is witnessed by the adjacent or related nodes (like players in a copy).
u Analysis: The project covers a multiplicity of technical characteristics and functional mechanisms. The overall development is rather difficult. However, it is highly practicable in terms of performance.
At the initial stage of the project, four stages of blockchain game development were analyzed. After combing, the highest prospect was proposed, implicating to create a complete multi-platform game running environment, which can provide game developers with convenience in developing blockchain games and a perfect ecological environment to the maximum, while bringing game users a brand-new gaming experience and a game form that transcends the previous ones.
Based on the initial project prospect, numerous technical goals and functional modules are listed, indicating that the technical support for the project vision is rather effective. However, as public blockchain of the industry application basis, it encompasses various technical applications and functional modules. Comparatively speaking, the development difficulty is rather big. Meanwhile, as released by the white paper, the theoretical throughput of the Cocos-BCX test chain can reach up to 100,000 tps. The actual throughput is approximate to 3,500 tps, and the block time is 3 seconds, that is, the information broadcast across the entire network is completed once every 3 seconds. It can be seen from the project technical performance data that it has a relatively strong realistic significance. Therefore, on the whole, the project puts forward a sizeable technical challenge, and in the meantime has a reasonable practicability, therefore, it is worthwhile to look forward to!

(五) Project status

1. Product | 7 points

(1)System-level products
Ø The application development framework that supports multiple operating systems and various blockchain environments.
Ø Completely scripted, componentized and data-driven application development tools;
Ø An improved blockchain system, which is oriented to high performance applications and based on graphene technology framework, and its related functional components.
Ø Supporting non-homogeneous wallets;
Ø A blockchain browser that supports the contract event subscription;
Ø Supporting the third-party non-homogeneous asset exchanges;
Ø Supporting the blockchain game developed by a third party;
Ø Cross-chain asset acceptance gateway.
(2) Functional products
Ø De-intermediary assets (prop) operation interface;
Ø Paradigms of non-homogeneous assets circulation platform;
Ø Supporting player autonomy and blacksmith shop mechanism;
Ø Visual IDE (including visual editing of the game program and contract);
Ø Complete wallet, user system and blockchain browser;
Ø Smart contract system that allows iterative updating.
u Analysis: According to the information released on the official website of the project, the timeline shows that the Cocos-BCX main chain has started the closed beta test in the third quarter of 2018. Based on the obvious characteristics of the project technology module, Cocos-BCX has launched two series of projects, namely, system-level and function-level products, including development frameworks, blacksmith shop mechanisms tailored to various operations and multiple environment.

2. Code updating | 2 points

u Analysis: It is learned from official communication that the source code of the project has not been made public for the purpose of keeping the project's trade secret confidential. It is planned that the project will be open source in the future after the ecological and system products become gradually stabilized.

3. Completion status | 8 points

u Analysis: The project has formulated an overall development plan and recent work tasks, and at the same time it has demonstrated its strong vitality through weekly report, timeline and development broadcast.
According to the official channel inquiry, the project has formulated the Roadmap for the 2018 key milestone quarter and the recent detailed work task breakdown plan, and the project has a very complete display system featuring three major development progresses:
(1) Weekly reporting system
(2) Project timeline
(3) Development broadcast
Through the Roadmap+ work breakdown + 3 major system model, the project's development trajectory and dynamics have been display in a basically three-dimensional, spatial, meticulous and detailed manner, and in the meantime, the powerful execution and self-vitality of the project have been also displayed.

(六) Institution enabling (Investors)

1. Cooperative institutions | 9 points


https://preview.redd.it/w7g2hjxttb821.jpg?width=1036&format=pjpg&auto=webp&s=da35e0e9e453271300bdd8e6574e8c3a61e70225
u Analysis: Cocos-BCX has a wide margin for cooperation, and its cooperation institutions are not only numerous, but also mainly of leading and quality enterprises in the industry.
The cooperative institutions include HelloEOS, NEO, NEBULAS (chain), Loom, IMEOS.ONE, Kingsoft Cloud and SlowMist Technology, etc.
NEO is one of the earliest blockchain projects in China. It was officially created in 2014 and was open sourced in real time in Github in June 2015. Since its establishment, the NEO team has experienced ups and downs of the blockchain industry. This project can be said to be a veteran project in the industry. NEO combines with a series of technologies, such as point-to-point network, Byzantine fault tolerance, digital certificate, smart contract, superconducting transactions, and cross-chain interoperability protocols, to perform rapid, efficient, secure, and legitimate smart management of assets.

2. Investment institutions | 9 points


https://preview.redd.it/s2td22eutb821.jpg?width=1273&format=pjpg&auto=webp&s=ffcd40c67fcd16739b16207e364b91e98180ffd8
u Analysis: There are numerous investment institutions, many of which are Class I institutions, with a strong institutional strength.
Investment institutions include NGC, Binance, INB Capital, Dfund, 500 Startups, BlockVC, OK Blockchain Capital, Yisu Capital, Xiong'an Capital, ONTology, FreeS FUND, NODE Capital, Consensus Capital, Hash Capital, NEO Capital, Ticker Capital , ContractVC, Junwu Capital, Candy Capital, Hofan VC, BMETA Capital, BYTE Capital, Nimble Capital, InsurFun, BA Capital, Consensus Lab, TOKENMANIA, Byzantium Capital, etc.
The rest investment institutions are also well-known. For example, DFUND was founded by Zhao Dong, a well-known figure in the digital currency domain in July 2017. Yisu Capital is engaged in the early investment and project cooperation, focusing on blockchain technology and big data intelligence analysis, and other domains.

(七) Drawing attention | 6 points


https://preview.redd.it/fa3k060vtb821.png?width=605&format=png&auto=webp&s=ca3b6a4b185c81bbafb5bccb571a43b9bbaba148
Project content description

https://preview.redd.it/y6w1f3hvtb821.png?width=796&format=png&auto=webp&s=8f3b2116d63a77f839a1e18787dd986c34a573a3
u Analysis: The game user and developer group are highly active, and meanwhile the publicity of the media and news client are enhanced. The overall heat and operation and maintenance thinking are well-balanced. However, the current community operation link is relatively weak, and requires improvement in the follow-up.
Presently, the number of community fans is small. Therefore, the operation link of project content is rather weak. However, media communication and news broadcasting, two links of propaganda and promotion efforts, are quite effective, basically realizing a timely and real-time posting of the latest developments of the project. Although the media and news client are widely disseminated, their social interaction is relatively weak. The social platform has its own communication limitations. However, it is highly involved in interaction.

(VIII) Social Response | 7.78

User A | Point: 7.9
Comment: From the perspective of production mode and commercialization, this game is the most sophisticated. So I think this project has a very extensive application scenario, especially for developers and users.
User B | Point: 7.0
Comment: Currently, it seems that the game industry is greatly influenced by macro policies. Tencent's recent performance is a case in point. However, the project orientation is quite good.
User C | Point: 8.0
Comment: The technical advantages of the project are particularly prominent, and it also seizes the development opportunities of the blockchain. However, ultimately it needs to undergo the test of the market.
User D | Point: 9.0
Comment: First of all, COCOS has a large number of developers, solid underlying technology and reliable team work, which is worth looking forward to. Of course, great "undertaking" calls for enormous input, especially in technology. The way is arduous and long. Come on.
User E | Point: 7.0
Comment:
As a game practitioner, I would talk something about Cocos-BCX project: when the concept of blockchain game is put forward for everyone to consider, at this stage, it is no doubt that the dimension (type) of the game is developed from the perspective of "inheritance" and "tracing its very origin". If the Cocos-BCX project can be applied by game developers in terms of "development kit", is easy to learn and use, and allows the mobile game developers to shift to the development of blockchain games without a threshold, then the game dimensions and users can be further expanded. In a word, phenomenal games of blockchain games need the support of Cocos-BCX and the efforts of developers, both of which are indispensable. It is hoped that the team will make great efforts in development and publicity. "Coin friends" may not need to know how the game is developed, but they will certainly care about its future space. Such evaluation can only be called prospects and expectations. It remains to be determined whether the project adopts capital operation or the mode as solid as the old engine of COCOS till the project is landed.

III. Evaluation Summary

The project orientation is accurate, and the team has a strong lineup. It merits pointing out that its technical strength and model architecture design are particularly prominent, and there are an array of investment and cooperation institutions with strong strength. However, at present, the code has not been open sourced and the community operation and maintenance is deficient. The information disclosure of the Token link is not particularly perfect, and individual investors may care much about it. The Roadmap of the project development is all too simple. These are the deficiencies of the project development at the current moment.
submitted by ONETOPGlobal to u/ONETOPGlobal [link] [comments]

CryptoCurrency Mining Difficulty Log Jan 27 2020 Hash Rates & difficulty for CryptoCurrency Bitcoin basics: What is the difficulty target and how does it adjust itself? How to Calculate Bitcoin Difficulty What is Hash Rate and Hash Power in Crypto Mining Bitcoin mining difficulty example. THIS IS CRAZY!!

The mining site will show you the amount of work (measured as a number of hashes per second) that the javascript miner can perform running inside your browser. For comparison, as of the most-recent difficulty adjustment, the total amount of hashing performed on the Bitcoin network globally is about 3.1 Thash/s. That T stands for the SI prefix ... When mining, your computer creates a block of data, which has a list of all of the transactions it knows about, includes a transaction that pays you the mining bonus, and then hashes that. If the hash happens to be a small enough number (as defined by the difficulty), the block is valid. If it's not, you increment a random number called a "nonce" that's in the block, so that the block has the ... It is harder now than it was in the past years to solve the equation because the mining difficulty algorithm periodically recalibrates as miners join or leave the network. The blockchain is designed to produce a certain level of Bitcoin (BSV) every ten minutes. Mining difficulty is measured in the hashes per second in attempting to find a block. Bitcoin mining difficulty – the measure of how hard it is to earn mining rewards in the world’s largest cryptocurrency by market cap – has reached a new record high above 7.93 trillion. That ... Folgende nichtdeterministische Faktoren spielen beispielsweise eine Rolle: Je mehr Rechenleistung dem Bitcoin Mining zur Verfügung gestellt wird, desto schneller wächst die Difficulty, also desto mehr Leistung wird benötigt, um einen neuen Block zu finden. Auch der Bitcoin-Kurs spielt eine Vielfältige Rolle: Je höher der Preis, desto größer der mögliche Gewinn. Das lockt wieder ...

[index] [9961] [44370] [50502] [32854] [46028] [6233] [9055] [31580] [3423] [37482]

CryptoCurrency Mining Difficulty Log Jan 27 2020 Hash Rates & difficulty for CryptoCurrency

#Mining #BitCoin #Cryptocurrency Welcome to the 13th episode of CCMDL , January 27 2020 We go over talk a little about the difficulty of Ethereum , Bitcoin, Monero & LiteCoins difficulty for ... Bitcoin mining difficulty example. THIS IS CRAZY!! This is a great example of how fast the bitcoin community is upgrading their hardware and leaving my micro rig in the past. Watch in 360 the inside of a nuclear reactor from the size of an atom with virtual reality - Duration: 3:42. EDF in the UK Recommended for you. 360° And this hash power or guessing attempts are made by miners who mine the #Bitcoin_blocks by a process called #Bitcoin_mining ... Bitcoin Mining Difficulty: An Overview - Duration: 4:37. AMBCrypto ... Genesis Mining was founded in 2013 Butterfly labs, bitcoin block, block erupter, difficulty, asic miner, Bitcoin, how much will bitcoin difficulty increase, bitcoin mining, what is bitcoin ...

#